Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45.450
Filtrar
1.
Technol Cult ; 65(1): 237-263, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38661800

RESUMEN

When the Brooklyn Waterworks opened in 1859, it was one of America's most advanced water and sewer systems. Yet after Brooklyn was annexed by New York City, the waterworks' history slipped into obscurity, despite having a now-famous champion: the "poet of America," Walt Whitman, whose brother worked on the project. This article shows the Brooklyn poet's fierce, multiyear lobbying effort for the waterworks in various newspapers and introduces a wealth of newly recovered Whitman writings on the issue. As a journalist, Whitman exemplifies the nineteenth-century press as an intermediary between expert engineers and popular readers. The poet brought precise expertise, translated engineers' technical arguments into everyday language for his readers, and fought the resulting day-to-day political battles over construction in print. Whitman, then, is an underappreciated case study of the confluence of technology, public health, and local journalism.


Asunto(s)
Periodismo , Historia del Siglo XIX , Ciudad de Nueva York , Periodismo/historia , Ingeniería Sanitaria/historia , Humanos , Periódicos como Asunto/historia , Salud Pública/historia
2.
Environ Sci Technol ; 58(15): 6793-6803, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38574343

RESUMEN

Current disinfection processes pose an emerging environmental risk due to the ineffective removal of antibiotic-resistant bacteria, especially disinfection residual bacteria (DRB) carrying multidrug-resistant plasmids (MRPs). However, the characteristics of DRB-carried MRPs are poorly understood. In this study, qPCR analysis reveals that the total absolute abundance of four plasmids in postdisinfection effluent decreases by 1.15 log units, while their relative abundance increases by 0.11 copies/cell compared to investigated wastewater treatment plant (WWTP) influent. We obtain three distinctive DRB-carried MRPs (pWWTP-01-03) from postdisinfection effluent, each carrying 9-11 antibiotic-resistant genes (ARGs). pWWTP-01 contains all 11 ARGs within an ∼25 Kbp chimeric genomic island showing strong patterns of recombination with MRPs from foodborne outbreaks and hospitals. Antibiotic-, disinfectant-, and heavy-metal-resistant genes on the same plasmid underscore the potential roles of disinfectants and heavy metals in the coselection of ARGs. Additionally, pWWTP-02 harbors an adhesin-type virulence operon, implying risks of both antibiotic resistance and pathogenicity upon entering environments. Furthermore, some MRPs from DRB are capable of transferring and could confer selective advantages to recipients under environmentally relevant antibiotic pressure. Overall, this study advances our understanding of DRB-carried MRPs and highlights the imminent need to monitor and control wastewater MRPs for environmental security.


Asunto(s)
Desinfectantes , Purificación del Agua , Desinfección , Genes Bacterianos , Bacterias/genética , Antibacterianos/farmacología , Desinfectantes/farmacología , Plásmidos/genética
3.
Water Sci Technol ; 89(7): 1741-1756, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38619900

RESUMEN

Wastewater treatment plants (WWTPs) have positive and negative impacts on the environment. Therefore, life cycle impact assessment (LCIA) can provide a more holistic framework for performance evaluation than the conventional approach. This study added water footprint (WF) to LCIA and defined ϕ index for accounting for the damage ratio of carbon footprint (CF) to WF. The application of these innovations was verified by comparing the performance of 26 WWTPs. These facilities are located in four different climates in Iran, serve between 1,900 and 980,000 people, and have treatment units like activated sludge, aerated lagoon, and stabilization pond. Here, grey water footprint (GWF) calculated the ecological impacts through typical pollutants. Blue water footprint (BWF) included the productive impacts of wastewater reuse, and CF estimated CO2 emissions from WWTPs. Results showed that GWF was the leading factor. ϕ was 4-7.5% and the average WF of WWTPs was 0.6 m3/ca, which reduced 84%, to 0.1 m³/ca, through wastewater reuse. Here, wastewater treatment and reuse in larger WWTPs, particularly with activated sludge had lower cumulative impacts. Since this method takes more items than the conventional approach, it is recommended for integrated evaluation of WWTPs, mainly in areas where the water-energy nexus is a paradigm for sustainable development.


Asunto(s)
Aguas Residuales , Purificación del Agua , Humanos , Aguas del Alcantarillado , Eliminación de Residuos Líquidos/métodos , Huella de Carbono
4.
Water Sci Technol ; 89(7): 1846-1859, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38619907

RESUMEN

Geosynthetic clay liners (GCLs) are mostly used as flow barriers in landfills and waste containments due to their low hydraulic conductivity to prevent the leachate from reaching the environment. The self-healing and swell-shrink properties of soft clays (expansive soils) such as bentonite enable them as promising materials for the GCL core layers. However, it is important to modify their physico-chemical properties in order to overcome the functional limitations of GCL under different hydraulic conditions. In the present study, locally available black cotton soil (BCS) is introduced in the presence of an anionic polymer named carboxymethyl cellulose (CMC) as an alternative to bentonite to enhance the hydraulic properties of GCL under different compositions. The modified GCL is prepared by stitching the liner with an optimum percentage of CMC along with various percentages of BCS mixed with bentonite. Hydraulic conductivity tests were performed on the modified GCL using the flexi-wall permeameter. The results suggest that the lowest hydraulic conductivity of 4.58 × 10-10 m/s is obtained when 25% of BCS is blended with bentonite and an optimum 8% CMC and further addition of BCS results in the reduction of the hydraulic conductivity.


Asunto(s)
Bentonita , Eliminación de Residuos , Bentonita/química , Arcilla , Suelo , Metilcelulosa , Eliminación de Residuos/métodos , Carboximetilcelulosa de Sodio
5.
Water Sci Technol ; 89(7): 1771-1786, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38619902

RESUMEN

The effluent of WWTPs is an important source of microplastics (MP) for the aquatic environment. In this review study, MPs in wastewater treatment plants (WWTP) in Türkiye and their removal from WWTPs are reviewed for the first time. First, MP characteristics in the influent and effluent of WWTPs in Türkiye are discussed. In the next section, the abundance of MPs in the influent and effluent of WWTPs in Türkiye and the MP removal efficiency of WWTPs in Türkiye are evaluated. Then, the results of studies on MP abundance and characteristics in Türkiye's aquatic environments are presented and suggestions are made to reduce MPs released from WWTPs into the receiving environments. Strategies for reducing MPs released to the receiving environment from WWTPs of Türkiye are summarized. In the last section, research gaps regarding MPs in WWTPs in Türkiye are identified and suggestions are made for future studies. This review paper provides a comprehensive assessment of the abundance, dominant characteristics, and removal of MPs in WWTPs in Türkiye, as well as the current status and deficiencies in Türkiye. Therefore, this review can serve as a scientific guide to improve the MP removal efficiency of WWTPs in Türkiye.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Microplásticos , Plásticos , Aguas Residuales , Eliminación de Residuos Líquidos , Turquia , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
6.
PLoS One ; 19(4): e0302176, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38635601

RESUMEN

As one of the key materials used in the civil engineering industry, concrete has a global annual consumption of approximately 10 billion tons. Cement and fine aggregate are the main raw materials of concrete, and their production causes certain harm to the environment. As one of the countries with the largest production of industrial solid waste, China needs to handle solid waste properly. Researchers have proposed to use them as raw materials for concrete. In this paper, the effects of different lithium slag (LS) contents (0%, 10%, 20%, 40%) and different substitution rates of recycled fine aggregates (RFA) (0%, 10%, 20%, 30%) on the axial compressive strength and stress-strain curve of concrete are discussed. The results show that the axial compressive strength, elastic modulus, and peak strain of concrete can increase first and then decrease when LS is added, and the optimal is reached when the LS content is 20%. With the increase of the substitution rate of RFA, the axial compressive strength and elastic modulus of concrete decrease, but the peak strain increases. The appropriate amount of LS can make up for the mechanical defects caused by the addition of RFA to concrete. Based on the test data, the stress-strain curve relationship of lithium slag recycled fine aggregate concrete is proposed, which has a high degree of agreement compared with the test results, which can provide a reference for practical engineering applications. In this study, LS and RFA are innovatively applied to concrete, which provides a new way for the harmless utilization of solid waste and is of great significance for the control of environmental pollution and resource reuse.


Asunto(s)
Administración de Residuos , Administración de Residuos/métodos , Litio , Residuos Sólidos , Materiales de Construcción , Reciclaje/métodos , Residuos Industriales/análisis
7.
Chemosphere ; 355: 141884, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38575083

RESUMEN

Global water demand and environmental concerns related to climate change require industries to develop high-efficiency wastewater treatment methods to remove pollutants. Likewise, toxic pollutants present in wastewater negatively affect the environment and human health, requiring effective treatment. Although conventional treatment processes remove carbon and nutrients, they are insufficient to remove pharmaceuticals, pesticides, and plasticizers. Electrochemical processes effectively remove pollutants from wastewater through the mineralization of non-biodegradable pollutants with consequent conversion into biodegradable compounds. Its advantages include easy operation, versatility, and short reaction time. In this way, this review initially provides a global water scenario with a view to the future. It comprises global demand, treatment methods, and pollution of water resources, addressing various contaminants such as heavy metals, nutrients, organic compounds, and emerging contaminants. Subsequently, the fundamentals of electrochemical treatments are presented as well as electrochemical treatments, highlighting the latest studies involving electrocoagulation, electroflocculation, electroflotation, capacitive deionization and its derivatives, eletrodeionization, and electrochemical advanced oxidation process. Finally, the challenges and perspectives were discussed. In this context, electrochemical processes have proven promising and effective for the treatment of water and wastewater, allowing safe reuse practices and purification with high contaminant removal.


Asunto(s)
Contaminantes Ambientales , Metales Pesados , Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Aguas Residuales , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Agua
8.
Water Sci Technol ; 89(6): 1570-1582, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38557719

RESUMEN

Despite the high adsorption capacity of polyaluminum chloride and anionic polyacrylamide water treatment residuals (PAC-APAM WTRs) for Pb2+, Cd2+, Cu2+, and Zn2+, their influence on the adsorption behavior of heavy metals in traditional bioretention soil media remains unclear. This study investigated the impact of PAC-APAM WTRs at a 20% weight ratio on the adsorption removal of Pb2+, Cd2+, Cu2+, and Zn2+ in three types of soils. The results demonstrated improved heavy metal adsorption in the presence of PAC-APAM WTRs, with enhanced removal observed at higher pH levels and temperatures. The addition of PAC-APAM WTRs augmented the maximum adsorption capacity for Pb2+ (from 0.98 to 3.98%), Cd2+ (from 0.52 to 10.99%), Cu2+ (from 3.69 to 36.79%), and Zn2+ (from 2.63 to 13.46%). The Langmuir model better described the data in soils with and without PAC-APAM WTRs. The pseudo-second-order model more accurately described the adsorption process, revealing an irreversible chemical process, although qe demonstrated improvement with the addition of PAC-APAM WTRs. This study affirms the potential of PAC-APAM WTRs as an amendment for mitigating heavy metal pollution in stormwater bioretention systems. Further exploration of the engineering application of PAC-APAM WTRs, particularly in field conditions for the removal of dissolved heavy metals, is recommended.


Asunto(s)
Resinas Acrílicas , Hidróxido de Aluminio , Metales Pesados , Purificación del Agua , Cadmio , Suelo , Adsorción , Plomo , Metales Pesados/análisis , Purificación del Agua/métodos
9.
Environ Monit Assess ; 196(5): 416, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570390

RESUMEN

The research conducts a life cycle assessment (LCA) on wastewater treatment (WWT) methods-membrane bioreactor (MBR), soil biotechnology (SBT), and bio-electrochemical constructed wetlands (BCW)-in comparison with the conventional activated sludge process (ASP). Employing SimaPro v9.5 with a cradle-to-gate system boundary, the analysis utilizes the IMPACT 2002 + method, employing per cubic meter of treated wastewater as the functional unit. The analysis shows that SBT exhibits the lowest environmental impacts among the considered WWT methods. The global warming potential was 0.0996 kg CO2 eq. for SBT, 1.33 kg CO2 eq. for MBR, 0.131 kg CO2 eq. for BCW, and 0.544 kg CO2 eq. for ASP. BCW demonstrates a 75.91% decrease, while MBR exhibits a 144.48% increase compared to ASP. Notably, electricity consumption emerges as the primary contributor to environmental impact in MBR and ASP. The resource impact category varies with a 138.15% increase in MBR and an 83.41% decrease in SBT compared to ASP. Additionally, the research indicates that the high human health impact observed in MBR results mainly from increased carcinogens (0.00176 kg C2H3Cl eq.), non-carcinogens (0.01 kg C2H3Cl eq.), and ionizing radiation (3.34 Bq C-14 eq.). The findings underscore the importance of considering treatment efficiency and broader environmental implications in selecting WWT methods. As the world emphasizes sustainability, such LCA studies provide valuable insights for making informed decisions in wastewater management.


Asunto(s)
Eliminación de Residuos Líquidos , Aguas Residuales , Humanos , Animales , Eliminación de Residuos Líquidos/métodos , Dióxido de Carbono , Monitoreo del Ambiente , Suelo , Estadios del Ciclo de Vida
10.
Microb Biotechnol ; 17(4): e14458, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38568795

RESUMEN

Bioplastics, comprised of bio-based and/or biodegradable polymers, have the potential to play a crucial role in the transition towards a sustainable circular economy. The use of biodegradable polymers not only leads to reduced greenhouse gas emissions but also might address the problem of plastic waste persisting in the environment, especially when removal is challenging. Nevertheless, biodegradable plastics should not be considered as substitutes for proper waste management practices, given that their biodegradability strongly depends on environmental conditions. Among the challenges hindering the sustainable implementation of bioplastics in the market, the development of effective downstream recycling routes is imperative, given the increasing production volumes of these materials. Here, we discuss about the most advisable end-of-life scenarios for bioplastics. Various recycling strategies, including mechanical, chemical or biological (both enzymatic and microbial) approaches, should be considered. Employing enzymes as biocatalysts emerges as a more selective and environmentally friendly alternative to chemical recycling, allowing the production of new bioplastics and added value and high-quality products. Other pending concerns for industrial implementation of bioplastics include misinformation among end users, the lack of a standardised bioplastic labelling, unclear life cycle assessment guidelines and the need for higher financial investments. Although further research and development efforts are essential to foster the sustainable and widespread application of bioplastics, significant strides have already been made in this direction.


Asunto(s)
Plásticos Biodegradables , Administración de Residuos , Plásticos , Fósiles , Biopolímeros , Polímeros
11.
Environ Microbiol Rep ; 16(2): e13256, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38575150

RESUMEN

This study examined the effects of three Bacillus strains and one Saccharomyces cerevisiae strain on nitrogen transformation and microbial communities in pig and chicken manure compost. The findings revealed that the use of compound microbial inoculants increased the compost temperature, accelerated moisture reduction, enhanced cellulase activity, and stimulated the accumulation of NH4 +-N, NO3 --N, and total nitrogen (TN), resulting in a 9% increase in TN content. The abundance of Firmicutes decreased by 3.95% at the maturation phase, while Actinobacteria and Bacteroidetes increased by 1.64% and 1.85%, respectively. Inoculation led to an increase in amoA, nxrA and nifH gene copy numbers, while simultaneously reducing the abundance of nirK, nosZ and nirS genes. It also resulted in an increase in functional enzyme levels, specifically nif and amo, with a corresponding decrease in nor. Clostridium, Phascolarctobacterium, Eubacterium and Faecalibacterium from the class Clostridium, which have a significant correlation with nifH and nxrA genes, suggest their likely crucial role in nitrogen retention and fixation. Inoculation aided in the removal of pathogenic bacteria and antibiotic resistance genes (ARGs) like fluoroquinolones, nucleosides and nitroimidazole. This study provides effective theoretical support for the mechanism of nitrogen retention and fixation, and for improving the quality of compost.


Asunto(s)
Compostaje , Microbiota , Animales , Porcinos , Estiércol , Ganado , Nitrógeno , Suelo , Bacterias/genética , Microbiota/genética
12.
Environ Monit Assess ; 196(5): 476, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662019

RESUMEN

The ingestion of Ti-containing nanoparticles from drinking water has emerged as a concern in recent years. This study therefore aimed to characterize Ti-containing nanoparticles in water samples collected from four water treatment plants in Taiwan and to explore the challenges associated with measuring them at low levels using single particle-inductively coupled plasma mass spectrometry. Additionally, the study sought to identify the most effective processes for the removal of Ti-containing nanoparticles. For each water treatment plant, two water samples were collected from raw water, sedimentation effluent, filtration effluent, and finished water, respectively. Results revealed that Ti-containing nanoparticles in raw water, with levels at 8.69 µg/L and 296.8 × 103 particles/L, were removed by approximately 35% and 98%, respectively, in terms of mass concentration and particle number concentration, primarily through flocculation and sedimentation processes. The largest most frequent nanoparticle size in raw water (112.0 ± 2.8 nm) was effectively reduced to 62.0 ± 0.7 nm in finished water, while nanoparticles in the size range of 50-70 nm showed limited changes. Anthracite was identified as a necessary component in the filter beds to further improve removal efficiency at the filtration unit. Moreover, the most frequent sizes of Ti-containing nanoparticles were found to be influenced by salinity. Insights into the challenges associated with measuring low-level Ti-containing nanoparticles in aqueous samples provide valuable information for future research and management of water treatment processes, thereby safeguarding human health.


Asunto(s)
Titanio , Contaminantes Químicos del Agua , Purificación del Agua , Taiwán , Purificación del Agua/métodos , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Nanopartículas del Metal , Filtración , Agua Potable/química
13.
Environ Monit Assess ; 196(5): 475, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662271

RESUMEN

The potentially harmful effects of consuming potentially toxic elements (PTEs) and microplastics (MPs) regularly via drinking water are a significant cause for worry. This study investigated PTEs (Cd, Cu, Cr, Ni, Pd, Zn, Co), MPs, turbidity, pH, conductivity, and health risk assessment in the water treatment plant in Kielce, Poland. Zn had the highest concentrations throughout the water treatment facility, whereas Cd, Pb, and Co had lower concentrations (< 0.1 µg/L). The order of the concentrations among the specified PTEs was like Zn˃Cu˃Ni˃Cr˃Cd˃Pb and Co. The minimum turbidity was 0.34, and the maximum was 1.9 NTU. The range of pH in water samples was 6.51-7.47. The conductivity was 1,203-1,445 ms in water samples. These identified MPs were categorized into fiber and fragments. The color of these identified MPs was blue, red, black, green, and transparent. The minimum and maximum size of the MPs was 196 and 4,018 µm, while the average size was 2,751 ± 1,905 µm. The average concentration of MPs per liter of the water treatment plant was 108.88 ± 55.61. The elements listed are C, O, Na, Mg, Al, Si, K, Ca, and Ti. Fe and Zn were the predominant elements seen using EDX. HQ values of the PTEs were less than one for adults and children. The human health risk associated with all detected PTEs revealed that the HQ values exhibit a satisfactory degree of non-carcinogenic adverse health risk. HI values for adults and children age groups were less than one. In most water treatment samples, the carcinogenic value exceeds the threshold value of 10-6. The PTEs and MP concentrations in drinking water should be periodically monitored to minimize consumers' environmental pollution and health risks.


Asunto(s)
Monitoreo del Ambiente , Microplásticos , Contaminantes Químicos del Agua , Purificación del Agua , Contaminantes Químicos del Agua/análisis , Polonia , Microplásticos/análisis , Purificación del Agua/métodos , Humanos , Medición de Riesgo , Agua Potable/química , Metales Pesados/análisis , Adulto
14.
Huan Jing Ke Xue ; 45(5): 2871-2880, 2024 May 08.
Artículo en Chino | MEDLINE | ID: mdl-38629549

RESUMEN

Presently, the improvement of soil organic matter is the basis to ensure food security, but the accumulation and transformation characteristics of soil phosphorus (P) as affected by organic matter remain unclear. The accumulation, transformation, and migration characteristics of soil P in different soil layers of vegetable fields were researched under the application of organic materials. Six treatments were set up in the experiment:control (no fertilization), traditional fertilizer application by farmers, biochar, chicken manure, food waste, and straw application. Available phosphorus (Olsen-P), water-soluble phosphorus (CaCl2-P) content, soil phosphorus forms, soil organic matter (SOM), and pH were determined during the pepper harvest period. In the 0-5 cm and 5-10 cm soil layers, the available phosphorus content of traditional fertilization of farmers was higher, and the available phosphorus content of the four organic materials was in the order of straw > biochar > chicken manure > food waste. Compared to that with food waste, the straw and biochar treatments increased soil available phosphorus by 59.6%-67.3% and 29.1%-36.9%, respectively. The straw treatment could easily enhance the soil labile P pool, and soil labile P in the 0-5 cm soil layer increased by 47.3% and 35.1% compared with that under the chicken manure and food waste treatments, respectively. With the increase in soil depth, the proportion of available phosphorus in the chicken manure treatment decreased the least, and available phosphorus of the 20-30 cm soil layer accounted for 55.9% of the topsoil layer but only accounted for 16.0%-34.0% under treatment with the other three materials. Compared with that under the traditional fertilization of farmers, the pH significantly increased by 0.18-0.36 units after the application of organic fertilizer, and the pH of the chicken manure and food waste treatments was significantly higher than that of biochar and straw (P < 0.05). SOM content under the biochar treatment significantly increased by 7.7%-17.6% compared to that under the other three organic materials. Among the four organic materials, the straw treatment boosted the labile P pool the most, which was conducive to the rapid increase in plant-available P. Phosphorus was most likely to migrate downward under the chicken manure treatment. In the field management based on soil fertility enhancement, the application of biochar could not only improve soil pH and SOM but also avoid excessive accumulation of phosphorus in the surface layer, which decreases environmental risks.


Asunto(s)
Agricultura , Carbón Orgánico , Eliminación de Residuos , Animales , Fósforo , Verduras , Fertilizantes , Estiércol , Suelo/química , Pollos
15.
Sci Total Environ ; 927: 172442, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38614336

RESUMEN

The Partial Denitrification-Anammox (PD/A) process established a low-consumption, efficient and sustainable pathway for complete nitrogen removal, which is of great interest to the industry. Rapid initiation and stable operation of the PD/A systems were the main issues limiting its engineering application in wastewater nitrogen removal. A PD/A system was initiated in a continuous stirred-tank reactors (CSTRs) in the presence of low concentration of organic matter, and the effects of organic matter types and COD/NO3--N ratios on the performance of the PD/A system, and microbial community characteristics were explored. The results showed that low concentrations of organic matter could promote the rapid initiation of the Anammox process and then the strategy of gradually replacing NO2--N with NO3--N could successfully initiate the PD/A system at 70 days. The type of organic matter had a significant effect on the initiation of the Anammox and the establishment of the PD/A system. Compared to glucose, sodium acetate was more favorable for rapid start-up and the synergy among microorganisms, and organic matter was lower, with an optimal COD/NO3--N ratio of 3.0. Microorganisms differed in their sensitivity to environmental factors. The relative abundance of Planctomycetota and Proteobacteria in R2 was 51 %, with the presence of three typical anammox bacteria, Candidatus_Brocadia, Candidatus_Kuenenia, and Candidatus_Jettenia in the system. This study provides a new strategy for the rapid initiation and stable operation of the PD/A process.


Asunto(s)
Reactores Biológicos , Desnitrificación , Eliminación de Residuos Líquidos , Aguas Residuales , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Nitrógeno , Anaerobiosis , Oxidación-Reducción , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo
16.
Sci Total Environ ; 927: 172304, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38604357

RESUMEN

Hyperthermophilic composting, characterized by temperatures equal to or exceeding 75 °C, offers superior compost maturity and performance. Inoculation with thermophilic bacteria presents a viable approach to achieving hyperthermophilic composting. This study investigates the effects of inoculating thermophilic bacteria, isolated at different temperatures (50 °C, 60 °C, and 70 °C) into compost on maturity, gaseous emissions, and microbial community dynamics during co-composting. Results indicate that the thermophilic bacteria inoculation treatments exhibited peak temperature on Day 3, with the maximum temperature of 75 °C reached two days earlier than the control treatment. Furthermore, these treatments demonstrated increased bacterial richness and diversity, along with elevated relative abundances of Firmicutes and Proteobacteria. They also fostered mutualistic correlations among microbial species, enhancing network connectivity and complexity, thereby facilitating lignocellulose degradation. Specifically, inoculation with thermophilic bacteria at 60 °C increased the relative abundance of Thermobifida and unclassified-f-Thermomonosporaceae (Actinobacteriota), whereas Bacillus, a thermophilic bacterium, was enriched in the 70 °C inoculation treatment. Consequently, the thermophilic bacteria at 60 °C and 70 °C enhanced maturity by 36 %-50 % and reduced NH3 emissions by 1.08 %-27.50 % through the proliferation of thermophilic heterotrophic ammonia-oxidizing bacteria (Corynebacterium). Moreover, all inoculation treatments decreased CH4 emissions by 6 %-27 % through the enrichment of methanotrophic bacteria (Methylococcaceae) and reduced H2S, Me2S, and Me2SS emissions by 1 %-25 %, 47 %-63 %, and 15 %-53 %, respectively. However, the inoculation treatments led to increased N2O emissions through enhanced denitrification, as evidenced by the enrichment of Truepera and Pusillimonas. Overall, thermophilic bacteria inoculation promoted bacteria associated with compost maturity while attenuating the relationship between core bacteria and gaseous emissions during composting.


Asunto(s)
Bacterias , Compostaje , Microbiota , Microbiología del Suelo , Compostaje/métodos , Microbiota/fisiología , Calor , Contaminantes Atmosféricos/análisis
17.
BMC Plant Biol ; 24(1): 275, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605329

RESUMEN

Heavy metals (HMs) contamination, owing to their potential links to various chronic diseases, poses a global threat to agriculture, environment, and human health. Nickel (Ni) is an essential element however, at higher concentration, it is highly phytotoxic, and affects major plant functions. Beneficial roles of plant growth regulators (PGRs) and organic amendments in mitigating the adverse impacts of HM on plant growth has gained the attention of scientific community worldwide. Here, we performed a greenhouse study to investigate the effect of indole-3-acetic acid (IAA @ 10- 5 M) and compost (1% w/w) individually and in combination in sustaining cauliflower growth and yield under Ni stress. In our results, combined application proved significantly better than individual applications in alleviating the adverse effects of Ni on cauliflower as it increased various plant attributes such as plant height (49%), root length (76%), curd height and diameter (68 and 134%), leaf area (75%), transpiration rate (36%), stomatal conductance (104%), water use efficiency (143%), flavonoid and phenolic contents (212 and 133%), soluble sugars and protein contents (202 and 199%), SPAD value (78%), chlorophyll 'a and b' (219 and 208%), carotenoid (335%), and NPK uptake (191, 79 and 92%) as compared to the control. Co-application of IAA and compost reduced Ni-induced electrolyte leakage (64%) and improved the antioxidant activities, including APX (55%), CAT (30%), SOD (43%), POD (55%), while reducing MDA and H2O2 contents (77 and 52%) compared to the control. The combined application also reduced Ni uptake in roots, shoots, and curd by 51, 78 and 72% respectively along with an increased relative production index (78%) as compared to the control. Hence, synergistic application of IAA and compost can mitigate Ni induced adverse impacts on cauliflower growth by immobilizing it in the soil.


Asunto(s)
Brassica , Compostaje , Ácidos Indolacéticos , Contaminantes del Suelo , Humanos , Níquel/metabolismo , Níquel/toxicidad , Brassica/metabolismo , Peróxido de Hidrógeno/metabolismo , Rizosfera , Clorofila A , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo
18.
Sci Total Environ ; 927: 172346, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608881

RESUMEN

Constructed wetlands (CWs) offer an efficient alternative technology for removing emerging organic contaminants (EOCs) from wastewater. Optimizing CW performance requires understanding the impact of CW configuration on EOC removal and microbial community dynamics. This study investigated EOC removal and microbial communities in horizontal subsurface flow (HSSF) CWs over a 26-month operational period. Comparison between tuff-filled and gravel-filled CWs highlighted the superior EOC removal in tuff-filled CWs during extended operation, likely caused by the larger surface area of the tuff substrate fostering microbial growth, sorption, and biodegradation. Removal of partially positively charged EOCs, like atenolol (29-98 %) and fexofenadine (21-87 %), remained constant in the different CWs, and was mainly attributed to sorption. In contrast, removal rates for polar non-sorbing compounds, including diclofenac (3-64 %), acyclovir (9-85 %), and artificial sweeteners acesulfame (5-60 %) and saccharin (1-48 %), seemed to increase over time due to enhanced biodegradation. The presence of vegetation and different planting methods (single vs. mixed plantation) had a limited impact, underscoring the dominance of substrate type in the CW performance. Microbial community analysis identified two stages: a startup phase (1-7 months) and a maturation phase (19-26 months). During this transition, highly diverse communities dominated by specific species in the early stages gave way to more evenly distributed and relatively stable communities. Proteobacteria and Bacteroidetes remained dominant throughout. Alphaproteobacteria, Acidobacteria, Planctomycetes, Salinimicrobium, and Sphingomonas were enriched during the maturation phase, potentially serving as bioindicators for EOC removal. In conclusion, this study emphasizes the pivotal role of substrate type and maturation in the removal of EOCs in HSSF CW, considering the complex interplay with EOC physicochemical properties. Insights into microbial community dynamics underscore the importance of taxonomic and functional diversity in assessing CW effectiveness. This knowledge aids in optimizing HSSF CWs for sustainable wastewater treatment, EOC removal, and ecological risk assessment, ultimately contributing to environmental protection.


Asunto(s)
Biodegradación Ambiental , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua , Humedales , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Eliminación de Residuos Líquidos/métodos , Aguas Residuales , Microbiota
19.
Sci Total Environ ; 927: 172410, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608884

RESUMEN

There is little evidence of the long-term consequences of maintaining sanitary hot water at high temperatures on the persistence of Legionella in the plumbing system. The aims of this study were to describe the persistence and genotypic variability of L. pneumophila in a hospital building with two entirely independent hot water distribution systems, and to estimate the thermotolerance of the genotypic variants by studying the quantity of VBNC L. pneumophila. Eighty isolates from 55 water samples obtained between the years 2012-2017 were analyzed. All isolates correspond to L. pneumophila serogroup 6. The isolates were discriminated in four restriction patterns by pulsed-field gel electrophoresis. In one installation, pattern A + Aa predominated, accounting for 75.8 % of samples, while the other installation exhibited pattern B as the most frequent (81.8 % of samples; p < 0.001). The mean temperature of the isolates was: 52.6 °C (pattern A + Aa) and 55.0 °C (pattern B), being significantly different. Nine strains were selected as representative among patterns to study their thermotolerance by flow-cytometry after 24 h of thermic treatment. VBNC bacteria were detected in all samples. After thermic treatment at 50 °C, 52.0 % of bacteria had an intact membrane, and after 55 °C this percentage decreased to 23.1 %. Each pattern exhibited varying levels of thermotolerance. These findings indicate that the same hospital building can be colonized with different predominant types of Legionella if it has independent hot water installations. Maintaining a minimum temperature of 50 °C at distal points of the system would allow the survival of replicative L. pneumophila. However, the presence of Legionella in hospital water networks is underestimated if culture is considered as the standard method for Legionella detection, because VBNC do not grow on culture plates. This phenomenon can carry implications for the Legionella risk management plans in hospitals that adjust their control measures based on the microbiological surveillance of water.


Asunto(s)
Hospitales , Legionella pneumophila , Microbiología del Agua , Legionella pneumophila/aislamiento & purificación , Legionella pneumophila/genética , Legionella pneumophila/fisiología , Abastecimiento de Agua , Calor
20.
Environ Sci Technol ; 58(15): 6540-6551, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38574283

RESUMEN

Water age in drinking water systems is often used as a proxy for water quality but is rarely used as a direct input in assessing microbial risk. This study directly linked water ages in a premise plumbing system to concentrations of Legionella pneumophila via a growth model. In turn, the L. pneumophila concentrations were used for a quantitative microbial risk assessment to calculate the associated probabilities of infection (Pinf) and clinically severe illness (Pcsi) due to showering. Risk reductions achieved by purging devices, which reduce water age, were also quantified. The median annual Pinf exceeded the commonly used 1 in 10,000 (10-4) risk benchmark in all scenarios, but the median annual Pcsi was always 1-3 orders of magnitude below 10-4. The median annual Pcsi was lower in homes with two occupants (4.7 × 10-7) than with one occupant (7.5 × 10-7) due to more frequent use of water fixtures, which reduced water ages. The median annual Pcsi for homes with one occupant was reduced by 39-43% with scheduled purging 1-2 times per day. Smart purging devices, which purge only after a certain period of nonuse, maintained these lower annual Pcsi values while reducing additional water consumption by 45-62%.


Asunto(s)
Agua Potable , Legionella pneumophila , Legionella , Abastecimiento de Agua , Microbiología del Agua , Ingeniería Sanitaria , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...